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Abstract

The COVID-19 pandemic had a devastating impact on resource-limited countries like Ecuador. To un-
derstand the factors contributing to this problem, we analyzed the Excess Death Factor (EDF) in Ecuadorian
provinces during the pandemic. Our study employed spatial exploration, multicollinearity assessment, and
Linear Regression (LM), Spatial Autoregressive (SAR), and Conditional Autoregressive (CAR) models. We
found that the unemployment rate, and the rates of White and Black populations, were significant predic-
tors of EDF in Ecuadorian provinces during COVID-19. These findings raise important questions about
the influence of these factors on the severity of the pandemic. By uncovering these relationships, our study
enhances our understanding of the complex dynamics between socioeconomic factors and COVID-19 out-
comes. This knowledge can inform targeted interventions and policies to mitigate the impact of future
pandemics in Ecuador and similar contexts.

Introduction

The COVID-19 pandemic in Ecuador is part of the worldwide pandemic of coronavirus disease 2019 (COVID-
19). The first reported case of the virus in Ecuador was confirmed on February 29, 2020, when a woman in her
70s tested positive. In April 2020, the COVID-19 pandemic in Ecuador was described as emerging as a possible
“epicenter” of the pandemic in Latin America. The city of Guayaquil, in particular, became overwhelmed to the
extent that bodies were left in the streets1.

Between January 1 and September 23, 2020, Ecuador experienced a significant number of excess deaths, with
a total of 36,402 excess deaths (95% CI: 35,762–36,827) or 208 per 105 population. Excess deaths refer to the
number of deaths that exceed the expected or normal levelswithin a specific time period. It indicates an increase
inmortality beyondwhatwould typically be anticipated based on historical data or statistical projections. These
deaths accounted for 171% of the expected deaths in a typical year.2

It is important to note that excess deaths in 2020have been formally estimated previously formanyhigh-income
countries with high COVID-19 cases. The numbers of all-cause deaths range between 120% and 131% of ex-
pected deaths in these countries, i.e. between 20% and 31% of excess deaths, highlighting the heavy burden
of COVID-19 spread directly on mortality, despite differences in demographics, social mixing patterns and
health care systems. In these countries, a major fraction of excess deaths (between 67% to 80%) are attributable
to COVID-19 deaths,3-6 suggesting that the majority of excess deaths are caused directly by COVID-19 infec-
tions. In contrast, Ecuador reported a relatively small number of COVID-19 deaths13; however, a surprisingly
large number of excess deaths was reported in the Our World in Data online database.7

This study builds upon the previous work conducted on excess deaths and the impact of COVID-19 in Ecuador.
Previous research, such as the study “Excess deaths reveal the true spatial, temporal, and demographic impact of
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COVID-19 on mortality in Ecuador” by Leticia Cuéllar et al, revealed the significant surge in per capita deaths
in Ecuador during the early stages of the pandemic. It highlighted the existence of a large number of excess
deaths, with only a fraction attributed to confirmed COVID-19 cases.2

However, this current study takes a different approachby focusing on identifying specific socioeconomic factors
that may have contributed to the higher spread of COVID-19 in certain provinces. It aims to uncover the
underlying reasons why the disease affected some regions more severely than others. While previous studies
highlighted the presence of excess deaths likely linked to COVID-19, they did not thoroughly investigate the
socioeconomic variables associated with the disproportionate impact.

In contrast, this study explores the relationship between excess deaths due to COVID-19 and various socioeco-
nomic factors at the province level. By employing spatial models and analyzing province-level data, it seeks to
address two key research questions: (1) whether there is spatial autocorrelation in the distribution of the Ex-
cess Death Factor (EDF) across Ecuadorian provinces, and (2) which specific socioeconomic factors, if any, are
correlated with EDF in each province. This research aims to uncover new insights into the factors contributing
to the higher transmission rates and severity of the disease in certain provinces, providing valuable knowledge
for future mitigation strategies and interventions.

By focusing on socioeconomic reasons behind the varying rates of COVID-19 spread across provinces, this
study expands the understanding of the pandemic’s impact in Ecuador. Its unique approach contributes to the
existing body of knowledge by delving deeper into the specific factors that may have influenced the disease’s
severity at a regional level.

Data

I began by collecting several comprehensive datasets relating to demographic factors across Ecuadorian
provinces and the effect of COVID-19 on deaths in Ecuadorian provinces. These data include COVID death
data collected in 2021 through the ecuacovid git repository8, the distribution of ages and population across
Ecuadorian provinces in 2021 from the Statistica website9, excess death data between January 1st and Septem-
ber 23rd, 2020, collected from the Ecuadorian National Institute of Statistics and Census and the Ecuadorian
Ministry of Government10, and extraction from IPUMS of Ecuador demographics from the 2010 census11.

The COVID death data provided information on COVID-related deaths in Ecuadorian provinces for the year
20214. The dataset obtained from the Statisticawebsite included data on the distribution of ages and population
across Ecuadorian provinces in 20215, enabling insights into the age composition of the populationwithin each
province.

To examine the impact of COVID-19 on mortality rates, the dataset on excess deaths between January 1 and
September 23, 2020, was acquired6. This data, collected from the Ecuadorian National Institute of Statistics
and Census and the Ecuadorian Ministry of Government, provided valuable insights into the excess deaths
associated with COVID-19 in Ecuadorian provinces.

Demographic data from the 2010 census of Ecuador were obtained from IPUMS7. This dataset required a
personal account on the IPUMS website and a data request. It included variables related to socioeconomic
factors such as ethnicity, literacy level, schooling, employment, and hoursworked perweek. The IPUMSdataset
provides a representative sample of one-tenth of the entire Ecuadorian population at the household level.
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Methods

I initiated the analysis of EDF in Ecuadorian provinces by conducting spatial exploration of EDF along with
other potential explanatory variables that I had collected. This exploration involved graphing choropleths of
EDF, population, unemployment, rate of population aged 60 and older, and ethnicity. The purpose was to vi-
sualize the spatial distribution of these variables in the provinces. To guide the spatial analysis, I referred to the
techniques outlined in “Applied Spatial Data Analysis with R” by Bivand.12

To ensure the validity of the analysis, I examined the presence of multicollinearity among the explanatory vari-
ables. I started by calculating the variance inflation factor (VIF) for the rate of population aged 60 and older, the
rate of unemployment, the rate of non-educated individuals, and the rates of indigenous, white, mestizo, and
black populations. High VIF values indicate the presence of multicollinearity, where the coefficients’ variance
estimates are inflated for variables that are highly correlated. To address this issue, I removed the variables that
exhibited multicollinearity, namely the rate of non-educated individuals and the rate of indigenous population.
Subsequently, I proceeded with the analysis.

To model the relationship between EDF and the remaining explanatory variables, I employed linear regression
(LM). Additionally, I constructed a binary neighborhood matrix, which was necessary for conducting Moran’s
I testing and building the Spatial Autoregressive (SAR) and Conditional Autoregressive (CAR) models. Prior
to further spatial analysis, it was crucial to assess the presence of spatial autocorrelation in the residuals of the
LM model using Moran’s I. The residuals represent the differences between the observed values of EDF and the
predicted values based on the covariates. Significant spatial autocorrelation in the residuals would indicate un-
explained spatial structure or clustering that the currentmodel failed to capture. the key assumptions is that the
residuals (the differences between observed and predicted values) are independent and identically distributed
(i.i.d.). If spatial autocorrelation is present in the residuals, it indicates that the residuals are not independent
and violates on of the key assumptions of linear regression, that the residuals are independent and identically
distributed (i.i.d.). To address this violation, alternative modeling approaches that explicitly account for spatial
autocorrelation are necessary.

Conversely, if no significant spatial autocorrelation was detected in the residuals, it would suggest that the
model adequately captured the spatial structure, and further spatial analysis would not be necessary.12

In my analysis of the EDF model for Ecuadorian provinces, no significant spatial autocorrelation was found
in the residuals. However, this does not completely negate the valuable benefits of conducting spatial analysis.
Spatial analysis offers a comprehensive perspective on the geographical distribution of the data. Moreover, spa-
tial analysis facilitates the visualization and communication of findings by enabling the creation of informative
maps and spatial representations. In my study, spatial analysis helps identify statistical patterns present in visi-
ble choropleths of Ecuador. These visualizations enhance the understanding of the data and facilitate effective
decision-making processes that may be due to the various socioeconomic factors in my study.13,14

Next, I fitted SAR and CAR models, accounting for spatial structure and dependencies, using the remaining
explanatory variables and EDF as the response variable. The previously fitted LM model served as a baseline
model that did not account for spatial dependence. SAR models take into account the spatial autocorrelation of
the EDF, meaning that the EDF in one province is influenced by the EDF values in its neighboring provinces.
On the other hand, CAR models not only consider spatial autocorrelation but also incorporate the spatial de-
pendence of the error term. while both SAR and CAR models take spatial relationships into account, the SAR
model focuses on thememoryless property of EDF, the response variable, whereas theCARmodel considers the
memoryless property for both EDF and the error terms. In the CAR model, this means that both EDF and the
error term have spatial dependencies for a province that influence the values in neighboring provinces. These
models assume that the error terms of neighboring provinces are correlated, providing a more comprehensive
understanding of the spatial patterns and relationships associated with the EDF in Ecuadorian provinces.
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The generalized formula for both SAR and CAR models are given below:

SAR Model:

𝑌 = 𝑋′𝛽 + 𝜆𝑊(𝑌 − 𝑋′𝛽) + 𝜀

where:

𝑌 represents the dependent variable (EDF), 𝑋 represents the matrix of independent variables, with 𝑋′ denot-
ing its transpose, including rate_60, UNEMP_rate, mestizo_rate, white_rate, and black_rate, 𝛽 represents the
vector of regression coefficients, 𝜆 is the spatial autocorrelation parameter, which is estimated from the data,
𝑊 represents the neighborhood matrix or contiguity matrix, capturing the spatial relationships between units,
and 𝜀 represents the error term.

CAR Model:

𝑌𝑖 | 𝑌𝑗∼𝑖 ∼ 𝑁(𝑋𝛽 + 𝜆𝑊(𝑌 − 𝑋𝛽) + ... + 𝜀)

where:

𝑌𝑖 represents the dependent variable (EDF), 𝑌𝑗∼𝑖 indicates the dependent variable in the neighbors of unit
𝑖, 𝑋 is the matrix of independent variables, including rate_60, UNEMP_rate, mestizo_rate, white_rate, and
black_rate, 𝛽 is the vector of coefficients associated with the independent variables, 𝜆 is the spatial autoregres-
sive coefficient that captures the spatial dependence, 𝑊 is the spatial weights matrix that represents the spatial
relationships between neighboring units, and 𝜀 is the error term.

In the model, (...) represents any additional parameters or assumptions specific to the model that are not ex-
plicitly mentioned in this equation.

To compare the SAR and CAR models, I utilized the Akaike Information Criterion (AIC). Lower AIC values
indicate better model fits, striking a balance between goodness of fit and model complexity. Minimizing the
AIC value guides the selection of a model that accurately represents the data while avoiding overfitting with an
excessive number of parameters. By selecting the model with the lowest AIC, I prioritize a good fit to the data
while considering the model’s complexity. This approach ensures a trade-off between accurately representing
the data and avoiding excessive complexity. 12

After identifying the most suitable model, I will proceed to analyze the results obtained from this model. These
results will be discussed, highlighting the significance of various socioeconomic factors on EDF.
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The illiterate rate, uneducated rate, total population, and indigenous rate variables all had VIF scores above the
2.5 threshold used, which indicates considerable collinearity with other variables.15

Once removing variables with high VIF scores, variables “rate_60,”(provinces ages over 60 rate) “UN-
EMP_rate,” “mestizo_rate,” “white_rate,” and “black_rate” showed acceptable VIF values, indicating no severe
multicollinearity issues (VIF values: rate_60 = 1.486, UNEMP_rate = 2.086, mestizo_rate = 1.840, white_rate
= 1.559, black_rate = 1.944).

Our LM equation:

𝐸𝐷𝐹 = 𝛽0 + 𝛽1 ⋅ 𝑟𝑎𝑡𝑒60 + 𝛽2 ⋅ 𝑈𝑁𝐸𝑀𝑃𝑟𝑎𝑡𝑒 + 𝛽3 ⋅ 𝑚𝑒𝑠𝑡𝑖𝑧𝑜𝑟𝑎𝑡𝑒 + 𝛽4 ⋅ 𝑤ℎ𝑖𝑡𝑒𝑟𝑎𝑡𝑒 + 𝛽5 ⋅ 𝑏𝑙𝑎𝑐𝑘𝑟𝑎𝑡𝑒 + 𝜖

represents a linear regression model where the dependent variable, EDF (Excess Death Factor), is modeled as a
linear combination of several explanatory variables. The explanatory variables include rate_60, UNEMP_rate,
mestizo_rate,white_rate, andblack_rate. Thecoefficients𝛽1,𝛽2,𝛽3,𝛽4, and𝛽5 represent the estimated
effects or contributions of each explanatory variable on the EDF in each province.

The intercept term, \(\beta_0\), represents the estimated value of EDF when all the explanatory variables
are zero. It captures the baseline level of EDF that is not influenced by the other variables.

The error term is denoted as \(\epsilon\), which represents the discrepancy between the observed values
of the dependent variable (EDF) and the values predicted by the model based on the estimated coefficients and
explanatory variables. It captures the unexplained or random variation in EDF that is not accounted for by the
explanatory variables.

AIC Values

Models

AIC Value

LM −0.87
SAR −6.52
CAR −3.12

Figure 5 ∶ Monte-Carlo Simulation of Moran’s I

Furthermore, I conducted a Moran’s I test to assess the presence of spatial autocorrelation in the residuals of
the LM model. The Moran’s I test did not reveal significant spatial autocorrelation in the residuals(p > 0.87),
suggesting that the model adequately captured the spatial structure of the data (Figure 5). As mentioned, the
absense of spatial autocorrelation entails that a linear regression method could be used instead of

Next, I will present the results of the SAR and CAR models, compare their goodness of fit using the Akaike In-
formationCriterion (AIC), and provide interpretation and insights regarding the significance of socioeconomic
factors on EDF in Ecuadorian provinces during the COVID-19 period.

AIC Values

Models
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AIC Value

LM −0.87
SAR −6.52
CAR −3.12

Figure 6 ∶ AIC Values for LM, SAR, and CAR Models

Lambda Values

Models

Lambda

SAR −0.31042
CAR −0.35001

Figure 7 ∶ Lambda Values for CAR and SAR Models

After creating SAR and CAR models, it is evident that the better model, again where a lower AIC suggests that
the model provides a better trade-off between goodness of fit and model complexity, is the SAR model with an
AIC of -6.52 (Figure 6). The estimated lambda value for the SAR model is -0.31042, and represents the spatial
autocorrelation parameter (Figure 7). Here, a negative lambda value indicates negative spatial autocorrelation,
and the SAR model’s lambda of -0.31042 suggests a slightly weaker negative spatial autocorrelation compared
to the CAR model.
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SARModel

Characteristic Beta 95% CI p-value

(Intercept) 0.82 0.56, 1.1 <0.001
rate_60 1.9 -0.57, 4.3 0.13
UNEMP_rate 55 44, 65 <0.001
mestizo_rate -0.22 -0.64, 0.20 0.3
white_rate -4.3 -8.2, -0.43 0.030
black_rate -12 -15, -8.8 <0.001
lambda -0.31 -0.39, -0.23 <0.001

𝑌 = 𝑋′𝛽 + 𝜆𝑊(𝑌 − 𝑋′𝛽) + 𝜀

where: 𝑌 is the dependent variable (EDF in this case), 𝑋 is the matrix of independent variables (including
rate_60, UNEMP_rate, mestizo_rate, white_rate, and black_rate), 𝛽 is the vector of coefficients, 𝜆 is the spatial
autoregressive coefficient, 𝑊 is the spatial weights matrix, 𝜀 is the error term.

Figure 8 ∶ Model summary for the SAR model

Extracting the SAR model, we find that Unemployment rate, Black population percentage, and White popula-
tion percentage are significant factors in predicting EDF in Ecuadorian provinces (Figure 8).

The unemployment rate (UNEMP_rate) is a significant predictor of the Excess Death Factor (EDF) in Ecuado-
rian provinces during COVID-19. For each one-unit increase in the unemployment rate, the expected value
of EDF increases by 54.8, on average, while holding other variables constant. This suggests that higher levels
of unemployment are associated with a higher EDF, indicating a potential correlation between unemployment
and the severity of the COVID-19 impact.

The difference in coefficient magnitude between the rate of White individuals (white_rate) and the rate of Black
individuals (black_rate) is notable in the SAR model.

The coefficient for white_rate (-4.32329) is negative and indicates that a higher proportion of White individuals
in a province is associated with a decrease in the expected value of the Excess Death Factor (EDF). In other
words, an increase in the rate of White individuals is linked to a potentially lower vulnerability or protective
effect against the impact of COVID-19.

On the other hand, the coefficient for black_rate (-12.01226) is also negative but larger in magnitude than the
coefficient for white_rate. This implies that a higher proportion of Black individuals in a province is associated
with an even greater decrease in the expected value of EDF. This suggests that the rate of Black individuals may
have a stronger protective effect or lower vulnerability to the impact of COVID-19 compared to the rate of
White individuals.

The difference in coefficient magnitude between white_rate and black_rate suggests that the rate of Black in-
dividuals may have a more pronounced influence on the EDF in Ecuadorian provinces during the COVID-19
pandemic. This could be indicative of specific demographic, social, or healthcare-related factors that contribute
to the observed association. Further research and exploration are necessary to better understand the underlying
reasons for this difference and its implications for public health interventions and policy decisions.
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Discussion

Thesignificant findings of this analysis emphasize the crucial role of socioeconomic factors in understanding the
variability in the Excess Death Factor (EDF) across Ecuadorian provinces during the COVID-19 pandemic. The
unemployment rate, as well as the rates of White and Black individuals, have emerged as significant predictors
of the severity of the pandemic’s impact. These findings underscore the importance of considering broader
contextual factors when examining the distribution of COVID-19 effects within a country.

It is crucial to acknowledge certain limitations and caveats associated with this analysis. Firstly, the study did
not encompass an investigation of the Galapagos Islands, which present a unique geographic and demographic
context within Ecuador. Future research should explore the specific dynamics of the Galapagos Islands and
their potential influence on the EDF.

Moreover, it is worth noting that the Moran’s I test did not reveal significant spatial autocorrelation. While this
suggests that the spatial dependence among the EDF values is not pronounced, further investigation is needed
to fully understand the spatial patterns and potential clustering of the EDF.

Additionally, although health site data was available, it was not incorporated into the analysis. Integrating spa-
tial data on health sites by province could provide valuable insights into the distribution of healthcare resources
and infrastructure, income disparities, job security, and other socioeconomic factors. This comprehensive ap-
proachwould contribute to amore nuanced understanding of the healthcare needs and potential vulnerabilities
associated with COVID-19 in Ecuador.

Further research is warranted to delve into the underlying mechanisms and implications of the identified asso-
ciations. Exploring the specific pathways through which unemployment rates and the rates of White and Black
individuals influence the EDF could shed light on the complex interactions between socioeconomic factors and
COVID-19 outcomes.

In conclusion, this study highlights the significance of socioeconomic factors in shaping the variation in the
EDF across Ecuadorian provinces during the COVID-19 pandemic. By considering the unemployment rate
and the rates of White and Black individuals, we gain valuable insights into the multifaceted nature of the pan-
demic’s impact. Future research should expand the analysis to include the Galapagos Islands and incorporate
spatial data on health sites and additional socioeconomic indicators. Thiswould provide amore comprehensive
understanding of the factors influencing the severity of the pandemic and inform strategies for effective public
health responses in Ecuador.
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